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1 Introduction

The question of how the spin of the proton is distributed among quarks and gluons has

been one of the central themes in QCD. It all started in the late 1980s when the European

Muon Collaboration (EMC) announced data for polarized deep inelastic scattering (DIS)

which apparently suggested that a disturbingly small fraction of the proton’s total spin

is accounted for by the helicity of quarks [1]. After more than twenty years of vigorous

experimental and theoretical efforts since then, the problem of the missing spin — or

the ‘spin crisis’ — has now become much less mysterious than it was initially thought.

[See [2] for the latest review of the subject.] Nevertheless, there still remains a great deal

of controversy regarding the nature of the decomposition of the total spin

1

2
=

1

2
∆Σ + ∆G+ Lz , (1.1)

where ∆Σ and ∆G are contributions from the helicity of quarks and gluons, respectively,

and Lz is their orbital angular momentum. Among the three terms in (1.1), ∆Σ is relatively

well-constrained by a wealth of DIS data supplemented by the NLO global QCD analysis.

The value often quoted in the literature is ∆Σ ∼ 0.25. This is larger than the original

EMC result, but is still significantly smaller than predictions based on the naive quark

model 1 ≥ ∆Σ & 0.6. On the other hand, extraction of ∆G is more difficult as it is not

directly measurable in DIS. While there have been several other experiments which are

better suited to this purpose, at present the data are not yet sufficient (especially in the
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low–x region) for an accurate determination of ∆G. However, one may notice that some of

the recent analyses [3–9] prefer a small value of ∆G consistent with zero, albeit with large

uncertainties of order 0.5.

The present status of the sum rule (1.1) just described is a persistent reminder of

fundamental theoretical questions in spin physics: (i) While the evolution with Q2 of the

helicity distributions ∆Σ(Q2) and ∆G(Q2) are calculable in perturbation theory at large

Q2 ≫ Λ2
QCD , they are essentially nonperturbative quantities. Can one evaluate them in

the strong coupling regime where the perturbative approach breaks down? (ii) Why is

∆Σ ‘unnaturally’ small, and what carries the rest of the total spin? If ∆G is small as

suggested by some recent works, it may well be that the orbital angular momentum Lz is

the dominant component. Existing models [10–13] that can give rise to a large value of Lz
include the nonperturbative dynamics of QCD in one way or another, so again the key to

understand this question resides in the strong coupling sector. (iii) How do the polarized

parton densities and structure functions behave at small values of the Bjorken x variable?

In addition to its phenomenological impact in fitting the data at low–x, the question is

of great conceptual interest because one expects, as in the unpolarized case, an interplay

between ‘hard’ and ‘soft’ Regge exchanges [14].

In this paper, we try to address these questions in the framework of the AdS/CFT

correspondence [15] which has emerged as a powerful tool to analyze the strong coupling

regime of certain non-Abelian gauge theories. Specifically, we shall study polarized DIS in

N = 4 supersymmetric Yang-Mills (SYM) theory at large ’t Hooft coupling λ ≫ 1 and

compute structure functions in the small–x region. Given the many dissimilarities between

N = 4 SYM and QCD, a priori it is not clear whether such a study, though interesting

in its own right, yields useful insights into the corresponding QCD problems. However, it

turns out that somewhat to our surprise the overall picture we shall arrive at is qualitatively

in line with the current experimental situation in QCD.

In the context of gauge/string duality, DIS was first formulated in [16] for the unpo-

larized case (see, also [17–22]), and recently generalized to the polarized case in [23]. The

analysis of [23] is focused on the large–x region which corresponds to the supergravity ap-

proximation on the string theory side. However, the internal degrees of freedom (‘partons’)

of hadrons are visible only at extremely small values of x of order ∼ e−
√
λ which in fact

is the Regge regime of the theory [16]. Thus, the very existence of spin physics at strong

coupling is intrinsically tied to high energy Regge scattering, and this is what we are going

to explore.

In N = 4 SYM, there are four ‘flavors’ of Weyl fermions associated with the SU(4)

R-symmetry. We shall find that the flavor singlet contribution to the g1 structure function

is simply vanishing for all values of Q2 > Λ2 where Λ is an infrared scale (analog of ΛQCD)

necessary to break conformal symmetry

∆Σ = 0 . (1.2)

Interestingly, the same conclusion has been reached in a Skyrme model calculation [10].

[Note that both approaches use the large–Nc approximation.] As a matter of fact, in

our case (1.2) follows rather trivially from general arguments. Instead, our main focus is

– 2 –
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the flavor non-singlet contribution which shows the expected power-law increase in 1/x as

x → 0. In the context of gauge/string duality, this of course is attributed to the usual

Regge behavior of the string S-matrix.

In section 2, we review the standard perturbative approach to polarized DIS in QCD. In

section 3 we consider the same process in N = 4 SYM and identify the dominant t-channel

process that survives at strong coupling. The actual calculation of the structure function

is performed in section 4 where we present an explicit expression of the g1 function (4.36)

which exactly satisfies the moment sum rule. Some comparisons between our results for

N = 4 SYM and the known results in QCD will be made at the end.

2 Review of polarized DIS in QCD

In this section we briefly review the basics of the operator product expansion (OPE) ap-

proach to polarized structure functions in QCD.1

We start with the forward Compton amplitude off a polarized hadron (usually a proton)

target

T µν =
i

2π

∫

d4yeiqy〈PS|T{Jµ(y)Jν(0)}|PS〉 = T µνsym + iT µνasym , (2.1)

where Pµ and Sµ are the momentum and spin vectors, respectively, and Jµ =
∑

f ef q̄fγ
µqf

is the electromagnetic current of quarks. The subscript sym/asym refers to the symmet-

ric/antisymmetric part under the exchange of Lorentz indices µ↔ ν. On the other hand,

the structure functions are the components of the following hadronic tensor

W µν =
1

2π

∫

d4yeiqy〈PS|Jµ(y)Jν(0)|PS〉 =
1

2π

∫

d4yeiqy〈PS|[Jµ(y), Jν(0)]|PS〉

= W µν
sym + iW µν

asym . (2.2)

After some manipulations one can show that W µν
sym and W µν

asym are real, and that

2 ImT µνsym = W µν
sym , (2.3)

2 ImT µνasym = W µν
asym , (2.4)

which represents the optical theorem. The polarized structure functions g1 and g2 are

contained in W µν
asym. From (2.1) and (2.4), one has, for the antisymmetric part, (ǫ0123 =

−ǫ0123 = +1)

Im
1

2π

∫

d4yeiqy〈PS|T{Jµ(y)Jν(0)}|PS〉






asym
=

1

2
W µν

asym (2.5)

= ǫµναβqα

(

Sβ
P · q (g1(x,Q

2) + g2(x,Q
2))− q · SPβ

(P · q)2 g2(x,Q
2)

)

,

where S2 = −M2 with M being the hadron mass.

1 In accordance with the majority of the QCD literature, we shall employ the ‘mostly minus’ metric

signature (+ −−−) for the Minkowski space and also in the gravity calculations in later sections.
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The usual strategy to evaluate the structure function is to perform an OPE for the

product JJ
∫

d4y eiqy〈PS|T{Jµ(y)Jν(0)}|PS〉






asym

=
2

Q2
ǫµναβqα

odd
∑

j=1

2qµ1 · · · 2qµj−1

Q2(j−1)

∑

f

e2f 〈PS|Θf
{β,µ1,···µj−1} + Θf

[β{µ1]µ2,···µj−1}|PS〉

= ǫµναβ
qα
P · q

odd
∑

j

(

aj + (j − 1)dj
j

Sβ
xj

+
(j − 1)(aj − dj)

j

S · q
P · q

Pβ
xj

)

, (2.6)

where we defined the operators

Θf
{β,µ1,···µj−1} =

1

j
q̄fγ

5γ{βiDµ1 · · · iDµj−1}qf , (2.7)

Θf
[β{µ1]µ2,···µj−1} =

1

j

j−1
∑

i

(

q̄fγ
5γβiD{µ1

· · · iDµj−1}qf − q̄fγ5γµiiD{µ1
· · · iDβ · · · iDµj−1}

)

,

(2.8)

and aj , dj are the coefficients in their matrix elements. [The brackets {· · · } ([· · · ]) denote

the (anti–)symmetrization and trace-subtraction of Lorentz indices.]

Although each term in (2.6) is real, one finds an imaginary part after summing over j

and analytically continuing in x to the physical region 0 ≤ x ≤ 1. The result is

g1(x) =
1

2

P+

4πS+

∑

f

e2f

(∫

dy−eixP
+y−〈PS|q̄f (0)γ5γ

+W [0, y−]qf (y
−)|PS〉

+

∫

dy−e−ixP
+y−〈PS|q̄f (0)γ5γ

+W [0, y−]qf (y
−)|PS〉

)

≡ 1

2

∑

f

e2f (∆qf (x) + ∆q̄f (x)) , (2.9)

where W [0, y−] is the Wilson line operator that assures gauge invariance and in the second

equality we have introduced the polarized quark and antiquark distributions.

Taking x-moments of the structure functions, one obtains sum rules

∫ 1

0
dxxj−1g1(x,Q

2) =
aj
4
, (2.10)

∫ 1

0
dxxj−1g2(x,Q

2) = −(j − 1)

4j
(aj − dj) , (2.11)

which can be inverted to give a well-known relation [24]

g2(x,Q
2) = −g1(x,Q2) +

∫ 1

x

dz

z
g1(z,Q

2) + ḡ2(x,Q
2) . (2.12)

The last term ḡ2 comes from the operator (2.8) and represents the twist-three contribu-

tion. (2.12) shows that the twist-two part of g2 is related to g1. For j = 1, the sum

– 4 –
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rule (2.10) measures the axial charge a of the target. One finds

∫ 1

0
dx g1(x,Q

2) =
1

4S+

∑

f

e2f 〈PS|q̄fγ5γ
+qf |PS〉 =

1

9
a(0) +

1

12
a(3) +

1

36
a(8) , (2.13)

where a(0) is the flavor singlet axial charge and a(3,8) are the octet (non-singlet) charges. [To

leading order, the coefficient functions are set to 1.] In massless QCD, the flavor octet axial

currents are exactly conserved, so a(3,8) are independent of Q2. However, the flavor singlet

axial current is not conserved due to anomaly. This induces a weak Q2-dependence in a(0)

in the NLO approximation [25] where one also finds O(αs) corrections in the coefficient

functions [26]. One can eliminate a(0,8) by taking a difference between the proton and

neutron structure functions

∫ 1

0
dx
(

gp1(x,Q
2)− gn1 (x,Q2)

)

=
1

12
(a(3)
p − a(3)

n ) =
gA
6
, (2.14)

where gA ≈ 1.25 is the isovector axial charge of the nucleon. (2.14) is known as the Bjorken

sum rule [27] and has been very well tested in experiment.

The singlet axial charge a(0) is nothing but the quark’s helicity contribution to the

total spin

a(0) =
∑

f

(

∆qf + ∆q̄f
)

=
∑

f

(

q+f − q−f + q̄+f − q̄−f
)

= ∆Σ , (2.15)

where ∆qf =
∫ 1
0 dx∆qf (x) and the superscript +/− means that the helicity is paral-

lel/antiparallel to the proton spin. As already mentioned in Introduction, roughly the spin

crisis is tantamount to the unnaturally small value of a(0) = ∆Σ as compared to unity and

also to the non-singlet axial charges.

3 Polarized DIS in N = 4 SYM

From this section on we discuss polarized DIS in N = 4 supersymmetric Yang-Mills theory

at large values of the ’t Hooft coupling λ≫ 1. Due to the AdS/CFT correspondence, the

problem reduces to the scattering of closed strings in the product space of five-dimensional

anti-de Sitter space AdS5 and the 5-sphere

ds2 =
2dy+dy− − dy2

1 − dy2
2 − dz2

z2
− dΩ2

5 , (3.1)

where we set the common radius R of AdS5 and S5 equal to unity. In this unit, the string

tension becomes α′ = 1√
λ
. Since N = 4 SYM is not confining, one has to break conformal

symmetry to generate spin-1/2 hadrons (such as the state dual to the dilatino) to be used

as the target in DIS. On the string theory side, this can be done by deforming the ten-

dimensional metric such that it approaches (3.1) near the Minkowski boundary z → 0, but

differs from it far away from the boundary, around z ∼ 1/Λ. The characteristic scale Λ

then sets the mass scale of hadrons. In this way one can ensure that the theory is identical

– 5 –
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to N = 4 SYM in the ultraviolet (UV). This is essential to our discussion since we shall

heavily rely on the OPE which of course is a property in the UV. On the other hand, there

is an important caveat regarding possible forms of the deformation in the infrared region

z ∼ 1/Λ. We shall comment on this as we go along.

The basic strategy to calculate the structure functions has been laid out in [16] for

the unpolarized case and in [23] for the polarized case. Here we briefly recapitulate the

essential features at strong coupling and then discuss the extension to the polarized case.

In the N = 4 theory, the analog of the electromagnetic current would be the 15-component

exactly conserved current Jµa (a = 1, · · · , 15) associated with the global SU(4)R-symmetry.

[Its explicit form is given in appendix A.] One then introduces a photon field by gauging

a U(1) subgroup of SU(4) which, for definiteness, is taken to correspond to the generator

ta=3 = diag(1/2,−1/2, 0, 0). As for the target, one employs a spin-1
2 hadron which has mass

M ∼ Λ and charge under SU(4). Similarly to (2.6), one can then define structure functions

Im
1

2π

∫

d4yeiqy〈PS|T{Jµ3 (y)Jν3 (0)}|PS〉






asym
(3.2)

= ǫµναβqα

(

Sβ
P · q (g1(x,Q

2) + g2(x,Q
2))− q · SPβ

(P · q)2 g2(x,Q
2) +

Pβ
2P · qF3(x,Q

2)

)

,

where the parity-violating structure function F3 is expected to arise since the

theory is chiral.

For large values of the Bjorken–x, the physical picture is completely different from

QCD. Instead of the twist-two operators (2.7) which acquire a large anomalous dimension

of order λ1/4, the OPE is dominated by the double trace operators which create and

annihilate the entire hadron. These operators are nominally of higher twist, but since

their dimension is protected, at moderately large Q2 they give a larger contribution to

the structure function than the twist-two operators. Thus in this regime it is not possible

to probe the internal structure of hadrons, but rather the hadron appears as a pointlike

particle (see, however, [22]).

When x is exponentially small, x ∼ e−
√
λ, the scattering starts to look more like the

situation in QCD at least from the viewpoint of the OPE. In the unpolarized case, the

scattering is dominated by the graviton exchange which is dual to the energy momentum

tensor. This is a twist-two operator with spin j = 2, and its dimension is protected.

Because of the curvature of the AdS space, the relevant value of j is slightly shifted away

from 2. However, the anomalous dimension remains of order unity in the vicinity of j = 2,

and thus the twist-two operators give the leading contribution.

Similarly, in the polarized case one expects that some protected operator in the J3J3

OPE gives the more important contribution than the double trace operators considered

in [23]. We observe that this operator is theR-current itself. Our argument is the following:

There exists an exact (i.e., valid for arbitrary λ) result for the three-point function of the

R-current operator2 [28, 29]

lim
y→0
〈Jµa (y)Jνb (0)Jρc (z)〉 =

N2

8π6
dabcǫµν αβ

yα

y4(y − z)6
(

ηβρ − 2
(y − z)β(y − z)ρ

(y − z)2
)

. (3.3)

2In fact there are also terms proportional to fabc. We simply ignore them since they do not contain the

epsilon tensor ǫµναβ . Besides, they vanish if one sets a = b.

– 6 –
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This is related to the axial anomaly in the triangle diagram. In the dual string theory

description, it arises from the Chern-Simons term in the effective supergravity action. Also

the two-point function is exactly known.

〈Jβc′(y)Jρc (z)〉 = δcc′
3N2

8π4

1

(y − z)6
(

ηβρ − 2
(y − z)β(y − z)ρ

(y − z)2
)

. (3.4)

One can deduce from (3.3) and (3.4) an OPE

Jµa (y)Jνb (0) = dabcǫµν αβ
yα

3π2y4
Jβc (0) + · · · , (3.5)

which should be valid for all values of λ. In appendix A we shall explicitly verify it in the

free theory λ = 0. Using (3.5), one finds

∫

d4y eiqy〈PS|T{Jµ3 (y)Jν3 (0)}|PS〉






asym
= d33cǫµν αβ

2qα

3Q2
〈PS|Jβc (0)|PS〉

= d33cǫµν αβ
qα

3P · q
1

x
〈PS|Jβc (0)|PS〉 . (3.6)

The matrix element has the form

〈PS|Jβc (0)|PS〉 = Qc(ASβ +BP β) , (3.7)

where Qc is the R-charge. The first and second terms come from the fermionic and bosonic

parts of the R-current, respectively. The coefficients A and B are identified with the elastic

form factors at zero momentum transfer. In principle, they can be computed once one

specifies an AdS/QCD model. However, an important point is that in order to obtain a

nonzero A (B is in general nonzero), it is necessary to employ models which are dual to

the N = 4 theory in the UV, and at the same time contain the massless Nambu-Goldstone

modes of spontaneously broken R-symmetry. Otherwise, the current conservation law

immediately implies A = 0, as was observed in a ‘hardwall’ model calculation in [23]. An

exemplary model which meets this requirement is the one constructed in [30]. Keeping

such a model in mind, in the following we simply assume that A 6= 0. Though this extra

assumption is not essential to our paper, it is in any case useful in order to make some

contact with QCD.

(3.6) is just the first term in the OPE, and as such, it does not contribute to the

structure function defined as the imaginary part of the correlator. Rather, it is related to

the first moment of g1 and F3 as in (2.10)

∫ 1

0
dx g1(x,Q

2) =
d33cQc

12
A ,

∫ 1

0
dxF3(x,Q

2) =
d33cQc

6
B . (3.8)

In QCD, apart from the global constraint (3.8), the first term in the OPE does not tell

anything about the actual x-dependence of g1. Its small–x behavior has then to be stud-

ied quite independently, using the perturbative QCD evolution [31–33] or perhaps in the

framework of Regge theory [34]. However, in strongly coupled N = 4 SYM it turns out

– 7 –
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that they are closely related. This can be readily understood by looking at the unpolarized

case where one takes the energy momentum tensor in the JJ OPE

JJ ∼ 1

x2
T . (3.9)

The 1/x2 dependence can be interpreted as arising from the exchange of a graviton which

has spin j = 2 in the t-channel. Once the graviton is Reggeized, a nonzero imaginary part

arises, hence the structure function

F1(x,Q
2) ∼

(

1

x

)2−O(1/
√
λ)

. (3.10)

In the polarized case, the 1/x dependence in (3.6) is due to the t-channel exchange of a

Kaluza-Klein photon which is dual to the R-current operator. In the next section, we

shall demonstrate that the Reggeization of the photon generates the polarized structure

functions which indeed behave as

g1(x,Q
2), F3(x,Q

2) ∼
(

1

x

)1−O(1/
√
λ)

, (3.11)

in the regime x ∼ e−
√
λ.

As for the g2(x,Q
2) structure function, we argue that it is much smaller than g1. To

see this, note that the derivation of the relation (2.12) hinges only on the existence of the

OPE and hence it is valid even at strong coupling. Moreover, the twist-three contribution

ḡ2 is expected to be negligible because of a large anomalous dimension of order ∼ λ1/4.

Now suppose that g1 behaves as

g1(x,Q
2) ∼ c

x1−ǫ , (3.12)

where ǫ ∼ O(1/
√
λ) is a small positive number. Plugging this into (2.12) one finds

g2(x) ∼ −
c

1− ǫ +
ǫc

(1− ǫ)x1−ǫ , (3.13)

and
∫ 1

0
dx g2(x,Q

2) = 0 . (3.14)

Thus g2 has the same x dependence as g1, but the coefficient is suppressed by a factor of

ǫ ∼ 1/
√
λ.

We have so far only considered the SU(4) R-currents Jµa that appear in the JJ OPE.

On the other hand, from the relation among the SU(4) generators

tatb =
δab

2Nf
+
dabc

2
tc + i

fabc

2
tc , (3.15)

with Nf = 4, it is clear that the OPE also involves the singlet axial current

Jµsinglet =

4
∑

i=1

ψ̄iσ̄
µψi , (3.16)

– 8 –
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associated with the UA(1) part of the putative U(4)=UA(1)×SU(4) R-symmetry. As we

mentioned already, the singlet axial current measures the fermions’ helicity contribution

to the total spin (cf., the a(0) term in (2.13)). The problem with this current in N = 4

SYM is that the UA(1) (or U(4)) is not a symmetry group of the theory, even classically

(except in the free theory), due to the Yukawa coupling ∼ fabcφ
ij
a ψibψ

j
c in the Lagrangian.

[The scalars cannot have charges under UA(1).] Moreover, quantum mechanically, there is

an axial anomaly in the divergence of the current

∂µJ
µ
singlet = − λ

4π2
F aµν F̃

µν
a + · · · , (3.17)

where · · · denotes the ‘classical anomaly’ from the Yukawa coupling. Due to the strong

violation of the ‘conservation law’, the singlet current is not protected under renormaliza-

tion. The operator (3.16) and its superdescendants (the so-called Konishi multiplet) are

dual to the string states in the first excited level. Consequently, the singlet current acquires

a large anomalous dimension of order λ1/4 at strong coupling,3 which makes it completely

irrelevant to the present discussion. Thus, as announced in Introduction, we are lead to a

drastic conclusion that the helicity of Weyl fermions does not contribute at all to the total

spin for all values of Q2 > Λ2.

What about the gluon helicity contribution ∆G? In the light-cone OPE on which our

analysis is based, the singlet current (3.16) that appears in the g1 sum rule does not mix

with gluonic operators since there is no local, gauge-invariant spin-1 gluonic operator [36].

Still, one can define ∆G as the first moment of a gauge-invariant non-local operator and

consider the evolution

∂

∂ lnQ2

(

∆Σ

∆G

)

=
λ

16π2

(

−6 0

3 0

)(

∆Σ

∆G

)

, (3.18)

where, as an illustration, we show the one-loop result from [37]. Unlike in QCD, the

(1,1) entry is nonzero because the singlet current is not conserved even classically. The

anomalous dimension matrix has a left eigenvector

∆Σ + 2∆G , (3.19)

with zero eigenvalue. Due to superconformal invariance, the linear combination (3.19) has

vanishing anomalous dimension to all orders [37]. Combining this fact with the anomalous

dimension of ∆Σ at strong coupling, γ ≈ −λ1/4, one finds

∆Σ(Q2) = C̃

(

Λ2

Q2

)λ1/4

, ∆G(Q2) = − C̃
2

(

Λ2

Q2

)λ1/4

+ C , (3.20)

where C and C̃ are integration constants (independent of Q2), and therefore,

∆Σ(Q2) + ∆G(Q2) =
C̃

2

(

Λ2

Q2

)λ1/4

+ C ≈ C . (3.21)

3For a detailed study of the Konishi multiplet and the anomaly in N = 4 SYM, see, e.g., [35]. We thank

M. Bianchi for answering our questions.
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We see that there is a very rapid transfer of angular momentum from the helicity degrees

of freedom to the orbital motion. In practice, these two contributions have constant values

C and 1
2 − C, respectively, for all Q2 > Λ2.

Finally in this section, we comment on the physical meaning of the g1 sum rule in the

N = 4 theory. Setting a = b = 3 in (3.15), we get

d33c

2
tc =

1

8











1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1











. (3.22)

Therefore,4

g1(x) ∼
∑

i=1,2

(ψ+
i (x)− ψ̄−

i (x)) −
∑

i=3,4

(ψ+
i (x)− ψ̄−

i (x)) + (bosonic contributions) . (3.24)

Thus the g1 sum rule (3.8) is a direct analog of the Bjorken sum rule (2.14) (no need to

subtract the singlet part since there is none) which simply represents the conservation of

the axial, or rather the R-charge corresponding to the generator (3.22).

4 The g1 structure function at strong coupling

The goal of this section is to derive (3.11) in its precise form. We first consider an approach

based on the string S-matrix in AdS5 following [38] (see also, [17, 39, 40]). Based on this, we

then develop a pragmatic approach suited for our problem and construct the g1 structure

function which exactly satisfies the sum rule (3.8).

4.1 Reggeized photon exchange in AdS

Scattering amplitudes in type IIB string theory in the background of AdS5×S5 show the

usual Regge behavior at small momentum transfer s̃≫ |t̃|

A ∼ s̃2+ α′ t̃
2 , (4.1)

where we put a tilde on the Mandelstam variables in order to distinguish them from the cor-

responding quantities in the four-dimensional boundary gauge theory. The s̃2-dependence

is due to the exchange of the (Reggeized) graviton G++ which has spin j = 2 in the light-

cone direction. On the other hand, the photon associated with the R-current operator is,

from the ten-dimensional point of view, a component of the graviton with one of its indices

polarized in the S5 direction

G+a = A+Ka , (4.2)

4Note that Wely fermions contain only two degrees of freedom. This is why there are only two terms

(as opposed to four, cf., (2.15)) in (3.24) for each flavor. Also, (3.24) is valid if the helicity of the hadron is

h = + 1
2
. If h = − 1

2
, then one should rather write

g1(x) ∼
X

i=1,2

(ψ̄+
i (x) − ψ−

i (x)) −
X

i=3,4

(ψ̄+
i (x) − ψ−

i (x)) . (3.23)
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where Ka (a = 1, 2, 3, 4, 5) is a Killing vector. Since the momenta in the S5 direction carried

by the external states are at most of order 1/R (R = 1 is the common radius of AdS5 and

S5), the photon exchange gives an amplitude smaller than (4.1) by a factor of s̃

A ∼ s̃1+ α′ t̃
2 . (4.3)

As suggested in [16, 38], the momentum transfer t̃ in (4.1) and (4.3) can be interpreted as

the Laplacian operator acting on the eight-dimensional transverse space. The form of the

Laplacian is determined by looking at the equation of motion obeyed by the field exchanged

in the t-channel. Generically, it takes the form

(∆j + f(j))Φj+ = 0 . (4.4)

for a spin–j field

Φj+ ≡ Φ+ + · · ·+
| {z }

j indices

. (4.5)

In (4.4) f(j) is a c-number function and the differential operator ∆j is defined as

∆j ≡
1

zj
∆0z

j , (4.6)

where ∆0 is the scalar Laplacian in AdS5

∆0 = −z2(∂2
z + ∂2

⊥) + 3z∂z . (4.7)

Note that we keep only the derivative ∂2
⊥ ≡ ∂2

y1 + ∂2
y2 in the transverse direction of the

Minkowski space. At high energy this factor is essentially identified with the momentum

transfer in the boundary gauge theory ∂2
⊥ → t.

For example, the graviton G++ obeys the linearized Einstein equation in AdS5 which

reduces to

∆2G++ = (−z2∂2
z − z2∂2

⊥ − z∂z + 4)G++ = 0 . (4.8)

Thus one sees that f(2) = 0. The amplitude (4.1) then becomes an operator

A ∼ s̃2−α′∆2/2 , (4.9)

acting on the hyperbolic space H3 parameterized by (z, ~y⊥). Going to the basis which

diagonalizes the operator ∆2, one finds that

A ∼ s̃2−2/
√
λ . (4.10)

Thus the graviton intercept is slightly shifted from 2 due to the curvature of AdS5, and

this can be identified with the Pomeron intercept [38, 41]. In unpolarized DIS, (4.10) is

essentially the origin the behavior (3.10) due to the correspondence s̃↔ 1/x.
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Similarly, the photon field obeys the five-dimensional Maxwell equation

DMF
M− = z2(−z2∂2

z − z2∂2
⊥ + z∂z)A+

= z2(∆1 − 3)A+ = 0 . (4.11)

Thus f(1) = −3 in this case, meaning that the field zA+ behaves as a scalar with negative

mass squared m2 = −3. The amplitude (4.3) becomes

A ∼ s̃1−α′(∆1−3)/2 . (4.12)

Though it is straightforward to diagonalize the operator ∆1, in order to make contact with

the OPE (2.6) it is convenient at this point to express (4.12) as a contour integral in the

complex j-plane

〈u|s̃1−α′(∆1−3)/2|u′〉 =

∫

dj

2πi
〈u| s̃j

j − 1 + α′(∆j − 3)/2
|u′〉

= 2
√
λ

∫

dj

2πi
s̃j
√
G′(G′+−)jDj+j−(u, u′) , (4.13)

where we collectively denoted u ≡ (z, yµ) and used the relation α′ = 1/
√
λ which holds

in the present units. In the second equality, we have defined the t-channel propagator

Dj+j− of the photon whose spin is analytically continued away from j = 1. It satisfies the

following relation

(

∆j − 3 + 2
√
λ(j − 1)

)

Dj+j−(u, u′) =
δ(5)(u− u′)
(G′+−)j

√
G′ . (4.14)

The solution is, for t = ∂2
⊥ = 0,

Dj+j−(u, u′) = (zz′)2−j
∫

dν

π

e−iν(ρ−ρ
′)

4ν2 + 1 + 2
√
λ(j − 1)

δ(4)(y − y′) , (4.15)

where we have defined z2 = e−ρ. Then (4.13) can be evaluated as

〈u|s̃1−α′(∆1−3)/2|u′〉 ≈ s̃jA(zz′)2−jA
∫

dν

π
s̃−Dν

2
e−iν(ρ−ρ

′)δ(4)(y − y′)

= s̃jA(zz′)2−jA
e−

(ρ−ρ′)2

4Dτ√
πDτ

δ(4)(y − y′) , (4.16)

where D ≡ 2/
√
λ is the ‘diffusion’ parameter, and τ ≡ ln s̃ is the rapidity. The Reggeized

photon intercept

jA ≡ 1− 1

2
√
λ
, (4.17)

is slightly shifted from 1 due to the nonzero curvature of AdS5. (4.16) implies that the

structure functions indeed exhibit the behavior anticipated in (3.11). It also shows that

the interaction is nonlocal in the fifth dimension due to diffusion: In a complete calcula-

tion (4.16) should be convoluted with the target wavefunctions localized around z ∼ 1/Λ

and the (s-channel) photon wavefunctions localized around z′ ∼ 1/Q.
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4.2 A pragmatic approach

One can incorporate the procedures in the previous subsection into the worldsheet OPE

approach [38, 40] by introducing vertex operators for the external and internal states.

However, applied to our problem of polarized DIS, it appears difficult in this approach

to obtain the expected tensor structure (namely, the epsilon tensor ǫµναβ in (3.2)) and

determine the normalization factor essential to discuss the sum rule. We therefore take a

different and more pragmatic tack. The idea is to try to reconstruct the imaginary part

from the first term in the OPE (3.6). Let us focus on the factor

1

x
〈PS|J+

c (0)|PS〉 . (4.18)

The insertion of the operator J+
c (0) excites a non-normalizable mode of the bulk gauge field

A+(z, y) =
2i

π2

∫

d4y′
z2

(z2 − (y − y′)2 + iǫ)3
A+(y′) , (4.19)

where A+(x′) is the boundary source which, for a local insertion J+
c (y′ = 0), is given by a

delta function Aµ(y
′) = δ+µ δ

(4)(y′). The integral kernel in (4.19) is the bulk-to-boundary

propagator. The matrix element (4.18) may be evaluated as

1

x
〈PS|J+

c (0)|PS〉 =
Qc
x

∫

d4y

∫

dz
√
GA+(z, y)ψ̄γ+ψ(z, y) . (4.20)

The y-dependence of the target wavefunctions is simply the plane wave eiP ·y which cancels

between ψ and ψ̄ (for the forward scattering). The d4y integral can then be done

∫

d4yA+(z, y) =
2i

π2

∫

d4yd4y′
z2

(z2 − (y − y′)2 + iǫ)3
A+(y′) =

∫

d4y′A+(y′) = 1 ,(4.21)

so that (4.20) reduces to

1

x
〈PS|J+

c (0)|PS〉 =
Qc
x

∫

dz
√
Gψ̄γ+ψ(z) =

Qc
x

(AS+ +BP+) . (4.22)

Alternatively, one can introduce an effective bulk current Jbulk which sources (4.19)

via the bulk-to-bulk propagator.

A+(z, y) =

∫

d4y′dz′
√
G′D+−(u, u′)J−

bulk(z
′, y′) . (4.23)

Naturally, Jbulk has a support at small z < 1/Q reflecting the uncertainty |∆y2| ∼ 1/Q2

in the location of the operator insertion (4.18). Using the asymptotic form of the propa-

gator [42] (adapted to the Minkowski metric)

D+−(u, u′) ≈ i

π2zz′

(

zz′

z2 − (y − y′)2 + iǫ

)3

, (z′ → 0) (4.24)

one finds the following relation between Jbulk
+ (z, y) and A+(y)

A+(y′) =
1

2

∫

dz′

z′
Jbulk

+ (z′, y′) . (4.25)
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j

1 3 5

b

jA

L

Figure 1. The integration contour in the complex j-plane. A branch cut appears after integrating

over ν.

[Note that J− = z′2J+.] The propagator D+− is identical to the one defined in (4.14) with

j = 1. (4.23) can be rewritten as

A+(z, y) =

∫

d5u′
1

∆1 − 3
δ(5)(u− u′)Jbulk

+ (u′) . (4.26)

So far we have dealt with only a single term in the JJ OPE. However, our experience

with QCD tells us that one should sum over the twist-two operators with odd j values as

in (2.6). We do this in the form of a contour integral in the complex j-plane

odd
∑

j

=

∫

L

dj

4i

1− e−iπj
sinπj

, (4.27)

where the contour L is shown in figure 1. Accordingly, all the factors in (4.20) should be

analytically continued away from j = 1. As for the propagator, it suffices to use (4.14) in

anticipation that in the end the important values of j will be close to j = 1. (4.26) is then

replaced by

Aj+(z, y) =

∫

d5u′
1

∆j − 3 + 2(j − 1)/α′ δ
(5)(u− u′)Jbulk

j+ (u′) . (4.28)

On the other hand, the factor 1/x obviously generalizes to

1

x
→
(

1

x

)j

. (4.29)
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All in all, (4.20) becomes5

I ≡ Qc
∫

dj

4i

1− e−iπj
sinπj

(

1

x

)j ∫

d4ydz
√
G

∫

d4y′dz′

× 1

∆j − 3 + 2(j − 1)/α′ δ
(5)(u− u′)Jbulk

j+ (u′)ψ̄γ+(∂+)j−1ψ(z) . (4.30)

Let us do the j-integral first. Deforming the contour to pick up the pole from the propagator

(see, figure 1), we get6

I = Qc
π

4
√
λ

∫

d4ydz
√
G

∫

d4y′dz′
1− e−iπj

sinπj

(

1

x

)1−α′ ∆j−3

2

×δ(5)(u− u′)Jbulk
+ (u′)ψ̄γ+ψ(z) . (4.31)

In order to diagonalize the Laplacian operator, we notice that

(

1

x

)1−α′ ∆j−3

2

= z2−j
(

1

x

)1−α′ ∆2−3
2

zj−2 , (4.32)

where

−∆2 + 3 = z2∂2
z + z∂z + z2∂2

⊥ − 1 = 4∂2
ρ + z2t− 1 . (4.33)

In the case of forward scattering t = 0, the eigenfunction of the operator ∆2 is simply a

plane wave in ρ, so the following representation of the delta function is useful

δ(z − z′) =

∫

dν

π

(

1

z

)j−2+2iν

z′j−3+2iν =

∫

dν

π

(

1

z

)j−2

z′j−3eiν(ρ−ρ
′) . (4.34)

(4.31) can then be evaluated as

I ≈ Qc
π

4
√
λ

∫

d4ydz
√
G

∫

dz′
√
G′(G′+−)jA(zz′)2−jA

×1− e−iπjA
sinπjA

∫

dν

π

(

1

x

)jA− 2ν2
√

λ

eiν(ρ−ρ
′)Jbulk

+ (z′, y)ψ̄γ+ψ(z) (4.35)

≈ Qc
(

1 + i
π

4
√
λ

)
∫

d4ydz
√
G

∫

dz′
√
G′(G′+−)jA(zz′)2−jA

×
(

1

x

)1− 1

2
√

λ e−(ρ−ρ′)2/4Dτ
√
πDτ

Jbulk
+ (z′, y)ψ̄γ+ψ(z) ,

where jA = 1 − 1/2
√
λ is as in (4.17) and τ = ln 1/x. We remind the reader that the

calculation is valid in the regime x ∼ e−
√
λ, or (1/x)1/

√
λ ∼ O(1). In (4.35), one recognizes

5There may be an unknown, multiplicative factor c(j) in the integrand of (4.30) such that c(1) = 1.

However, the j-integral will be dominated by the region j ≈ 1 where the function c(j) must be slowly

varying. [Physically, we do not see any source of rapid variation in j near j = 1 other than (4.28) and (4.29).]

Therefore we may set c(j) = 1 from the beginning.
6To avoid cumbersome expressions, we retain the letter j in (4.31) as representing the pole of the

propagator: j = 1 − α′(∆j − 3)/2.
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an imaginary part which can be identified with the g1 structure function. Working out the

prefactor, we arrive at7

g1(x,Q
2)S+ +

F3(x,Q
2)

2
P+ =

d33cQc
6π

π

4
√
λ

∫

d4ydz
√
G

∫

dz′
√
G′G′+−zz′

×
(

1

x

)1− 1

2
√

λ e−(ρ−ρ′)2/4Dτ
√
πDτ

Jbulk
+ (z′, y)ψ̄γ+ψ(z) .(4.36)

This is the main result of this paper. TheQ2-dependence is implicit in Jbulk
+ . It is important

to notice that the Regge intercept jA is independent of Q2.

Let us check that (4.36) satisfies the sum rule. For this purpose it is convenient to

undo the ν-integral and integrate over x (or equivalently, τ) first. Using

∫

dν

π
eiν(ρ−ρ

′)

∫ ∞

0
dτe−τ+(1−1/2

√
λ)τ−2ν2τ/

√
λ =

√
λ

2

∫ ∞

−∞

dν

π
eiν(ρ−ρ

′) 1

ν2 + 1
4

=
√
λ
z′

z
, (4.37)

where z′ ∼ 1/Q < z ∼ 1/Λ, we get

∫ 1

0
dxg1(x,Q

2) =
d33cQc
6πS+

π

4
√
λ

√
λ

∫

d4ydz
√
G

∫

dz′

z′
Jbulk

+ (z′, y)ψ̄γ+ψ(z)

=
d33cQc
12S+

∫

dz
√
Gψ̄γ+ψ(z)

=
d33cQc

12
A , (4.38)

where we take only the term proportional to S+ in the integral. In the second equality, we

used (4.25). This is exactly (3.8).

It is also instructive to identify the region of x which dominantly contributes to the

sum rule. Doing the ν integral first, we encounter the following integral

∫ 1

0
dx g1(x,Q

2) ∼
∫ ∞

0
dτe

− τ

2
√

λ
− ln2 z2/z′2

4Dτ . (4.39)

The integrand is strongly peaked at

τ =

√
λ

2
ln
z2

z′2
∼
√
λ

2
ln
Q2

Λ2
. (4.40)

According to our interpretation of the g1 structure function, (4.40) is the value around

which the R-charge of the target is concentrated. Incidentally, we note that the energy-

momentum sum rule is saturated around the value [17]

τ =

√
λ

4
ln
Q2

Λ2
. (4.41)

7Since we keep a small imaginary part of order 1/
√
λ, consistency requires that one should neglect the

O(1/
√
λ) terms in (G′+−)jA (zz′)2−jA .
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Finally, consider the anomalous dimension of twist-two operators. This can be read

off from the z′ dependence of the integrand. In (4.35) one recognizes the factor

(

1

z′

)j−2

e−iνρ
′
=

(

1

z′

)j−2−2iν

=

(

1

z′2

)γ(j)−1

∼ (Q2)γ(j)−1 , (4.42)

where [17, 38]

γ(j) =
j

2
− iν . (4.43)

This means that

(

j

2
− γ
)2

= −ν2 =
1

D
(j − jA) , (4.44)

or equivalently,

γ(j) =
j

2
−
√√

λ

2

(

j − 1 +
1

2
√
λ

)

. (4.45)

The total dimension is then

∆(j) = j + 2− 2γ(j) = 2 + 2

√√
λ

2

(

j − 1 +
1

2
√
λ

)

. (4.46)

When j = 1, ∆(1) = 3 and γ(1) = 0. This is the R-current operator which is protected.

The above formula gives an analytic continuation to j > 1. Inverting (4.46), one gets an

expression

j = jA +
(∆ − 2)2

2
√
λ

, (4.47)

which clearly shows the the known symmetry ∆ ↔ 4 −∆. Also, it is interesting to note

that one can write

∆ = 2±
√

1 +m2 , (4.48)

with

m2 =
2(j − 1)

α′ . (4.49)

(4.48) is the formula which relates the dimension of field theory operators and the mass of

vector fields in AdS5, and (4.49) is the mass of the spin j = 2n + 1 (n = 0, 1, 2, · · · ) state

in the n-th excited level m2 = 4n/α′ of type IIB superstring theory.
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5 Discussions

5.1 ‘Asymptotic’ spin decomposition

It was observed by Ji [43] that in QCD the partition of the proton spin among quarks

and gluons approaches the ratio 3Nf : 16 in the asymptotic limit Q2 → ∞. Here the

numbers include both the helicity and orbital contributions. The result has been obtained

quite independently of the parton dynamics in DIS, and is solely based on the renor-

malization of the angular momentum operator which turns out to be identical to that of

the energy-momentum tensor. In N = 4 SYM one can repeat the same analysis. The

energy-momentum operator is given as a sum of contributions from gluons, Weyl fermions

and scalars

Tµν = T gµν + Tψµν + T φµν . (5.1)

There are two other operators which are eigenvectors of the twist-two anomalous dimension

matrix with spin j = 2

T ′ = −2T g + Tψ + 2T φ ,

T ′′ = −T g + 4Tψ − 6T φ . (5.2)

The coefficients are actually exact, i.e., they do not receive radiative corrections [37, 44].

[See, also, appendix C of [18].] Therefore, for all values of the coupling one can decompose as

T g =
2

5
T − 2

7
T ′ − 1

35
T ′′ ,

Tψ =
2

5
T +

1

7
T ′ +

4

35
T ′′ ,

T φ =
1

5
T +

1

7
T ′ − 3

35
T ′′ . (5.3)

This implies that both the total energy and the total spin are partitioned among gluons,

fermions and scalars with the ratio 2 : 2 : 1. A novel feature at strong coupling is that T ′

and T ′′ acquire a large anomalous dimension of order λ1/4. Therefore, the ratio is realized

not only asymptotically, but in practice for all values of Q2.

Let us comment on a further decomposition into the helicity and orbital parts. Of

course the scalars φ have only orbital angular momentum. As we have argued, the contri-

bution of the Weyl fermions purely consists of orbital angular momentum. Although ∆G

remains undetermined in our approach,8 we are inclined to think that the gluons give only

orbital angular momentum as well, i.e., C = 0 in (3.20), since we see no reason why the

gluons are special. Thus we conclude that in strongly coupled theories that have a gravity

dual the helicity contribution tends to be suppressed, and in the limit of large coupling the

entire hadron spin is of orbital origin.

8Note that in Ji’s approach the gluon spin cannot be further decomposed into helicity and orbital parts

in a gauge invariant way. The gluon helicity contribution ∆G we have been discussing is the first moment

of a certain nonlocal gauge-invariant operator. Then the orbital part is defined as the rest.

– 18 –
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5.2 Small-x behavior

Let us compare our result in N = 4 SYM at small–x

gS1 (x) ≈ 0, gNS
1 (x) ∼

(

1

x

)1−1/2
√
λ

, (5.4)

for the singlet and non-singlet parts, respectively, with the corresponding behavior in QCD.

Experimentally, within the currently accessible range of x the flavor non-singlet contribu-

tion to g1 rises as x−α with α & 0.5 [14, 45] whereas the flavor singlet contribution is almost

zero at small–x [3]. This is qualitatively similar to (5.4), though of course such a compari-

son should be taken with caution. On the other hand, predictions from perturbative QCD

vary [31–33] depending on which terms in higher order graphs are resummed. Including

the so-called double logarithmic contributions, refs. [32, 33] obtained

gS1 (x) ∼
(

1

x

)k
√

λ
2π

, gNS
1 (x) ∼

(

1

x

)

√
λ

2π

, (5.5)

with k ≈ 2.5, which clearly means |gS1 | ≫ |gNS
1 | at low–x. Whether this opposite behav-

ior can be observed in a yet unexplored region of x in future experiments is not clear at

the moment. In any case, it is interesting to notice that the exponent of the non-singlet

part appears to have a smooth interpolation from 0 to 1 as the coupling λ is varied from

zero to infinity. We finally mention that in the conventional Regge theory, the singlet

and non-singlet parts are governed by the f1 and a1 meson Regge trajectories with neg-

ative intercepts −0.18 & αa1 , αf1 & −0.4. Therefore, g1(x) goes to zero as x → 0 in

this framework.
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A OPE at weak coupling

Since (3.5) is an exact result for any value of the coupling, one should be able to check it

in the free theory. The R-current operator is

Jµa = ψ̄iσ̄
µtaijψj + iφ†ij(∂

µ −←−∂ µ)T aij,klφkl

= ψ̄γµ
1 + γ5

2
taψ + iφ†ij(∂

µ −←−∂ µ)T aij,klφkl , (A.1)
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where i, j = 1, 2, 3, 4 and in the second line we use the Majorana four-component represen-

tation. For a = 3,

Jµ3 =
1

2

(

ψ̄1σ̄µψ1 − ψ̄2σ̄µψ2
)

+
i

2

(

φ†13∂
µφ13 − ∂µφ†13φ13

)

+
i

2

(

φ†14∂
µφ13 − ∂µφ†14φ14

)

.

(A.2)

In the JJ OPE, the antisymmetric tensor comes solely from the fermionic term. One finds

Jµa (y)Jνb (0) = ǫµναβdabc
yα

2π2y4
ψ̄γβ

1 + γ5

2
tcψ + · · · . (A.3)

Naively, the coefficient does not match (3.5). However one has to take into account the

operator mixing. This means that one should decompose in the following way

ψ̄γβ
1 + γ5

2
tcψ =

2

3

(

ψ̄γβ
1 + γ5

2
tcψ + iφ†(∂β −

←−
∂ β)T

cφ

)

+
1

3

(

ψ̄γβ
1 + γ5

2
tcψ − 2iφ†(∂β −

←−
∂ β)T

cφ

)

≡ 2

3
Jcβ +

1

3
J̃cβ , (A.4)

which gives

Jµa (y)Jνb (0) = ǫµναβdabc
yα

3π2y4

(

Jcβ(0) +
1

2
J̃cβ(0)

)

+ · · · . (A.5)

The prefactor in front of the R-current precisely reproduces the coefficient in (3.5). The

second term is the orthogonal operator to the R-current operator in the sense that

〈Jαa (y)J̃βb (0)〉 = 0 . (A.6)

To see this, we only need to note that the coefficient in (3.4) decomposes as 3
8 = 1

4 + 1
8 where

1
4 and 1

8 are the fermionic and bosonic contributions, respectively. At strong coupling, J̃

acquires a large anomalous dimension, so it is irrelevant.
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